REVIEW ARTICLE |
|
Year : 2020 | Volume
: 7
| Issue : 2 | Page : 49-59 |
|
Dissecting the functional pleiotropism of lysine demethylase 5B in physiology and pathology
Oluwaseun Adebayo Bamodu1, Tsu-Yi Chao2
1 Department of Hematology and Oncology, Cancer Center; Department of Medical Research and Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan 2 Department of Hematology and Oncology, Cancer Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City; Graduate Institute of Clinical Medicine, School of Medicine; Taipei Cancer Center, Taipei Medical University, Taipei City, Taiwan
Correspondence Address:
Dr. Oluwaseun Adebayo Bamodu Department of Hematology and Oncology, Cancer Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City Taiwan Tsu-Yi Chao Taipei Cancer Center, Taipei Medical University, Taipei City Taiwan
 Source of Support: None, Conflict of Interest: None
DOI: 10.4103/JCRP.JCRP_5_20
|
|
Background: The last two decades has been characterized by accruing evidence of the translational relevance of chromatin modification in normal genomic function, regulation, and pathology, especially with piqued interest in the intrinsic regulatory dynamism of histone methylation, and the increasing documentation of new members of the histone demethylase family. Recent studies provide functional and mechanistic insight into the peculiar biological role of these histone demethylases and their putative implication in pathological processes. Objective: This review aims to provide a summary of the latest findings related to pleiotropic roles of the Jumonji/AT-rich interactive domain (JARID) domain-containing lysine demethylase 5B (KDM5B, also known as JARID1B or PLU1) in physiology and pathology, with a focus on its therapeutic potentials. Results: KDM5B/JARID1B/PLU1 is restrictively expressed, evolutionarily conserved across mammalian species, and belonging to the α-ketoglutarate-dependent hydroxylase superfamily. KDM5B is actively involved in various physiological processes, including regulation of transcription elongation and alternative splicing in embryonic stem cells, epigenetic modulation of gene expression, neurogenesis, mammary gland development, and osteogenesis. Conversely, KDM5B is one of the earliest identified histone lysine demethylases associated with human disease, with several studies indicating that KDM5B plays a vital role in the initiation and progression of various malignancies, including lung, hypopharynx, brain, and breast cancers. Conclusion: This study provides concise insight into the functional pleiotropism of KDM5B in physiology and pathology, as well as highlights it role as an actionable therapeutic target.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|